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1 Geometry and Statistics

1.1 Spaces with curvature bounded below

A Riemannian structure is the specification of a means of measuring lengths. From a
practical point of view, this can be considered as the choice of a system of units of mea-
surement, but the mathematical abstraction goes a little further and allows this system
of measurements to depend on where the measurement is actually taken. Of all those
possible systems, the one we are familiar with, and in which the Pythagorean theorem
we learned at school is valid, is called ‘Euclidean’, named after the Greek mathematician
Euclid.

Given a smooth space with a Riemannian structure, the Riemann curvature tensor is
a mathematical object that measures how far the local geometry deviates from Euclidean
geometry. It is null if, and only if, the space is Euclidean, and moreover, it completely
characterises the geometry, in the sense that, given the Riemann curvature tensor, we can
completely recover the Riemannian metric structure. From a physical point of view, the
Riemann curvature tensor at a point in space describes the tidal forces that would affect
a physical body located at that point.
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By considering only the average effect of Riemann curvature, which mathematically
consists of contracting the tensor, we obtain the Ricci curvature tensor, which has be-
come a central concept since the formulation of general relativity, and in particular Ein-
stein’s revolutionary statement that the Ricci tensor of spacetime is equal to the energy-
momentum tensor T compensated by half of its trace T" times the metric g, up to Newton’s
universal constant G, hence asserting that spacetime is deformed by the matter it contains:

Ric = 887G (T— %Tg) :

The property for a space to have a Ricci tensor bounded below by some K € R
therefore means in some sense that this space contains at least an amount K of energy,
and has many implications, including the Bishop-Gromov inequality for the growth of the
volume of its geodesic balls, the local Poincaré inequality, the local doubling condition, the
Cheeger-Gromoll splitting theorem, Myers’s theorem for its diameter, or the Lichnerowicz
inequality for its fundamental frequency.

Moreover, given some K € R and some N € N, the class Rg n of all Riemannian
manifolds of dimension n < N having a Ricci tensor bounded below by K, form a totally
bounded space for the Gromov-Hausdorff topology. The theory of so-called Ricci-limit
spaces, appearing from limit of sequence of manifolds in R n, has been developped in
the nineties by Cheeger and Colding, see e.g. [CC97].

Since the Gromov-Hausdorff topology does not assume the type of smoothness of the
manifold structure, the search for the closure of Rk x is in some way equivalent to the
search for a synthetic notion of curvature bounded below, that is a notion that does not
involve any differential manifold structure.

To date, we do not yet have a synthetic notion of lower bounded Ricci curvature that
corresponds exactly to the closure of Rk y with respect to the Gromov-Hausdorff topology.
However, there are several very interesting synthetic notions, all of which correspond to
a class strictly larger than the closure of Rx x.

The class of spaces CD(K, N) is certainly the most important historically. It was
defined using optimal transport by Sturm [Stu06al, [Stu06b] and Lott and Villani [LV09], as
spaces with a geodesically convex entropy functional on the Wasserstein space W5, which
is the space of probability distributions with finite second moments, equipped with the
L?-optimal transport distance. Note that the letters C'D stand for ‘curvature-dimension’.

A more refined version is the class of RCD(K, N) spaces, which were defined by
Ambrosio-Gigli-Savaré [AGS15| as CD(K, N) spaces having a quadratic Cheeger energy,
a property known as infinitesimal Hilbertianity and ensuring that tangent spaces are
Euclidean by asking the Sobolev space W2 to be a Hilbert space. Note that here the
letter R stands for Riemann.

Today, the class RCD(K, N) seems to be the best way to look at the closure of Rx v,
even if both are not equal, see [BKMR21], and this is due to the large amount of research
successfully done to show that the good properties of manifolds in R x are still true for
RCD spaces. In particular, the Bishop-Gromov inequality and all theorems listed above
remain true for RC'D(K, N) spaces. My contribution [BOS24] with Brunel and Ohta is
part of this objective, generalizing Griinbaum’s inequality, which is a classical result in
the Minkowski theory of convex sets, to the setting of RC'D(0, N) spaces.

Several studies in this field have yielded results that were even new in the smooth
case. For example, Lichnerowicz’s quantitative inequality in the case of essentially non-
branching CD(K, N) spaces by Cavalletti, Mondino and Semola [CMS23]|, and its strength-
ening in the case of RC'D spaces in my collaboration with Fathi and Gentil [FGS24].

For a very nice exposition on the topic of spaces with curvature bounded below, we
refer the reader to Tewodrose’s PhD thesis [Tewl8]|. Let us mention some other very
interesting synthetic notion for Ricci curvature bounded below, including the Measure-
Contraction property introduced by Ohta [Oht07], defined in terms of the contraction of
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a measure on a set to a point; the Bishop-Gromov synthetic Ricci curvature introduced
by Besson and Gallot [BG21], defined in terms of the growth of the volume of balls; or the
barycenter curvature-dimension condition introduced by Han, Liu and Zhu in [HLZ25],
in terms of Wasserstein barycenters.

From the point of view of RCD spaces, the notions of space and volume are formalized
in the axiomatic of metric measure spaces. It is possible to understand those notions in
a rather different manner by mean of Brownian motions. For more intuition about it, see
my thesis manuscript [Ser22, Section 2.3|. The idea is not to understand a space in itself,
but to understand a space through a stochastic motion within that space, usually named
Brownian motion for historical reasons. There are two main rigorous formalizations of this
intuition that are possible: one using Bakry-Emery theory, the other using the concept of
Dirichlet forms.

The formalization by means of the Bakry-Emery theory is in fact equivalent to the
description of RCD spaces given above, up to the technical assumption known as the
Sobolev-to-Lipschitz property, see [HonlS8|. For a brief introduction to the Bakry-Emery
theory, see Section [3.2]

Formalization using Dirichlet spaces consists of starting from a notion of energy, called
Dirichlet energy, and considering stochastic motion as a particle following the (random)
trajectory that minimises this energy, see [FOTI1I|. This formalization makes it possi-
ble, in particular, to study singular spaces such as fractals, see for example [ARBCT21].
Dirichlet and RCD spaces are closely related. This is actually proved by Suzuki’s deep
result [Suzl9] stating that under the RCD condition, the pointed measure Gromov con-
vergence is equivalent to the weak convergence of Brownian motions.

General relativity was the main starting point for the development of Ricci curvature
theory, so it is natural to want to adapt the synthetic notion of curvature bounded below
to the case of Lorentzian spaces, that is spacetime geometry. We refer the reader to
Cavalletti and Mondino [CM22] for a review of this theory.

1.2 Statistical estimation in a geometric context

Although traditionally seen as rather distinct areas of mathematics, statistics and geom-
etry have, in recent years, developed a rapidly growing interface, with many insights to
be gained on both sides. At a high level, geometry enters statistics through the structure
of the data.

It is clear that certain types of data naturally possess a geometric structure. A typical
example arises in shape analysis, whose aim is to automatically detect similarities between
the shapes of objects in a database, with applications such as face recognition. However,
the striking feature of recent decades is that geometric data structures appear almost
universally, as they are linked to the high dimensionality of data.

Statistical estimation has long been confronted with the challenge of high dimension-
ality. When data points X7,..., Xy lie in a space R” with D > 1, a situation that
frequently occurs in practice today, for instance when the X, are audiovisual files with
ambient dimension on the order of several millions, statistical estimation rapidly becomes
computationally demanding. This difficulty is commonly known as the curse of dimen-
sionality, a term introduced by Bellman in his 1957 book [Bel57|, where he explicitly
emphasized how the explosive growth of volume in high-dimensional spaces renders data
increasingly sparse and isolated.

To illustrate how our low-dimensional intuitions (in dimensions 2 or 3) can fail in
higher dimensions, let us mention Stein’s celebrated paper [Ste56|, in which he showed
that in dimensions greater than three, the usual estimator of the mean is no longer optimal



in terms of quadratic risk. This phenomenon is now known as Stein’s paradoz.

When working with high-dimensional data, it is often unrealistic to assume that the
data are truly generated by a process with as many degrees of freedom as the ambient
dimension. Consider, for example, photographs of hands. Such images are naturally
embedded in a Euclidean space whose dimension equals the number of pixels. However,
it would be unreasonable to believe that a hand can vary freely in so many directions.
In reality, the effective degrees of freedom are much closer to the number of joints in the
hand, at most a few dozens, which is dramatically smaller than the number of pixels (on
the order of 5 million).

Therefore, when dealing with high-dimensional data, the most natural way to model
randomness is not through a uniform measure, as in lower-dimensional settings, but rather
through a probability distribution supported on a lower-dimensional manifold. In this
framework, the data (X,...,X,) are assumed to lie on a submanifold M C RP. This
perspective on high-dimensional data is now widely known as the manifold hypothesis, and
it continues to be an active area of research in statistics. To mention just a few contribu-
tions: Belkin and Niyogi’s 2009 conference [NB09|, the work of Fefferman et al. [FMN16],
which develops statistical tests to assess the validity of the manifold hypothesis; and, on a
more playful note, the paper [CIDSZ08| showing that 3 x 3 image patches naturally form
a Klein bottle.

Of course, real data are inevitably affected by noise, so the model suggested by the
manifold hypothesis is more accurately described as "manifold + noise". From this view-
point, several fundamental questions naturally arise, among which the three most promi-
nent are:

e Metric learning, which consists in identifying the manifold M itself,

e Clustering, which focuses on detecting the connected (or nearly connected) compo-
nents of M,

e Dimensionality reduction, which seeks to embed the manifold M into a lower-
dimensional space of dimension d < D, M Cc N4 C RP.

Let us expand a little further on the notion of dimensionality reduction. Linear tech-
niques such as Principal Component Analysis (PCA) are well-established and widely used,
but they suffer from a crucial drawback: they fail to capture the intrinsic structure of
the data. This limitation becomes particularly problematic when working with highly
structured data. In response, recent years have witnessed the development of nonlinear
dimensionality-reduction methods, which essentially project the data onto a lower dimen-
sional submanifold N* C R”. From this perspective, the problem of metric learning can
be viewed as the most refined form of dimensionality reduction, since it amounts to re-
covering the manifold M itself. However, M cannot always be accurately approximated,
and in practice it is often sufficient to identify another manifold N4 C RP, as long as
d < D. A wide variety of techniques have been proposed in this direction, notably Lapla-
cian eigenmaps [BNO3|, ISOMAP [T'SL00], and diffusion maps [CLOG|, to mention just
a few. Let us also highlight the role of autoencoders [HS06|, a class of neural networks
specifically designed to learn a representation of data in a latent space, which can be in-
terpreted as a compressed encoding of the original data while preserving its most relevant
features.

In the area of deep learning, a particularly exciting connection between statistics and
geometry arises through the attention mechanism of transformers. Roughly speaking,
the procedure begins by dividing a text into small blocks, called tokens, which are then
represented in a high-dimensional space so that tokens with similar usage in the text
are mapped to nearby points. This representation is known as word embedding, and can



be adapted to data types beyond text. The attention mechanism, or more precisely the
self-attention mechanism [VSPT17|, then analyzes the importance of each token relative
to all the others in the embedding space. In this way, the meaning assigned to each token
is determined by its context, and is therefore inherently contextual.

Put in more intuitive terms, large language models demonstrate that the meaning of
words can effectively be reduced to a geometry of words, and the self-attention mechanism
provides a means of computing this geometry.

Another way to view the interplay between geometry and statistics is to observe that
when certain information on a manifold is learnable, 1.e., can be efficiently approximated
by statistical estimators, this reflects less a property of the estimators themselves than
a statistical property of the underlying geometry. From this perspective, the most uni-
versal results seems to be Gromov’s reconstruction theorem, which states that a metric
measure space is uniquely determined by the law of the distance matrix between samples
of arbitrary size [Gro07, Section 33|. See also [Ver04] for a proof based on the law of large
numbers. More specific geometric properties also give rise to statistical consequences.
In particular, non-negative lower bounds on the Ricci curvature translate into notions of
statistical depth, while upper bounds on sectional curvatures lead to finite-sample bounds.

Statistical depth provides a way to quantify the centrality of a point with respect to
a cloud of data. One of the most widely used notions is Tukey’s depth [Tuk75|, which
is based on half-spaces and measures how difficult it is to separate a point from the
rest of the data cloud. Intuitively, points with high depth in this sense play the role of
medians, and this notion naturally leads to the construction of robust estimators [DG92].
In collaboration with Brunel and Ohta, we have shown that a non-negative lower bound
on the Ricci curvature implies that the barycenters of convex sets are deep in a generalized
sense of Tukey’s depth, where half-spaces are replaced by horoballs, see [BOS24]| for more
details.

Let us expand a little on upper bounds for sectional curvature. Just as lower bounds on
Ricci curvature can be characterized in a synthetic way, that is, without any reference to
differentiability (see Section[1.1]), upper (and likewise lower) bounds on sectional curvature
can also be described synthetically by means of triangle comparison. This leads to what is
known as Alexandrov geometry [AKP24]. The key idea is based on Toponogov’s theorem,
which states that if a Riemannian manifold has sectional curvature everywhere bounded
above by some k € R, then its geodesic triangles are thinner than the corresponding
triangles in the model space of constant curvature x: hyperbolic space if kK < 0, Euclidean
space if k = 0, and the sphere if k > 0. Since the notion of a triangle makes sense
even in the non-smooth setting of a geodesic metric space, Alezandrov curvature provides
a way to define curvature bounds directly through triangle comparison. In particular,
an upper bound on sectional curvature implies a local strong geodesic convexity of the
squared distance to any point. In the case of nonpositive sectional curvature, this geodesic
convexity is even global. Such convexity properties provide a natural framework to define
and study the notion of a mean or barycenter. The most celebrated, and perhaps the
most intuitive, statistical estimator in Euclidean space is the empirical mean, given by

1

for an ii.d data set (Xi,...,X,) € (RY)™ One of the simplest properties of S, is
its linearity in the data points X;. However, when the data lie in a non-linear space,
(X1,...,X,) € M", the usual linear definition of the mean no longer applies. A natu-
ral way to generalize S, to a non-linear setting is to observe that it is the least squares



estimator, that is,
n

S, € argmins 3 d(p, X,)? (1)
peM T

Minimizing this quantity makes sense in any metric space, and the resulting points are
known as Fréchet means |[Fré48|. The Fréchet mean enjoys properties of uniqueness,
consistency and asymptotic normality, which are closely related to upper bounds on the
sectional curvature of the space through the geodesic convexity properties mentioned
above, see [BP03|,[BP05]. An iterative procedure to approximate the minimizer of Problem
can be performed via a stochastic gradient-type descent, as introduced by Sturm
[Stu03]. In the case of nonpositive sectional curvature, the resulting inductive mean b,
converges to the population barycenter b*, and in particular,
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E [y, )% < 2,

where 02 = E [d(b*, X1)?] is the variance. Moreover, this convergence can be strengthened
into a Bernstein-type concentration bound: for all § € (0,1), it holds with probability at
least 1 — ¢ that

log(1/6
d(b*, b)) < —— + K M7
vn n
when X is K?-sub-Gaussian. See [BS24] for the case of nonpositive sectional curvature
(k < 0) and [BS25] for the case of a positive sectional curvature upper bound (x > 0),
where the analysis is more involved and the bounds are not yet sharp. Both results are

obtained in collaboration with Brunel.

2 Stein’s method and stability of functional inequalities

2.1 Stein’s method

Stein’s method is a set of techniques extensively developed from the seminal paper [Ste72]
of Charles Stein in 1972. The aim of these techniques is to give quantitative bound for
the distance between two probability measures. This method was introduced to quantify
the asymptotic normality of certain statistical estimators, and proved extremely fruitful
in mathematical statistics at a time when non-asymptotic bounds were establishing them-
selves as major theoretical guarantees for practical applications. We refer the reader to
the survey by Ross [Rosl1]| which remains the most cited survey on Stein’s method.

From a statistical perspective, the concept of distance between probability distribu-
tions serves as a bridge between asymptotic theory and finite sample theory. Asymptotic
theory asserts that with a sufficiently large amount of data, one can accurately estimate
the quantity of interest, commonly referred to as the estimand. However, "sufficient" can
range from a manageable sample size to one that is practically unattainable. In contrast,
finite sample theory focuses on determining the exact number of observations required to
estimate the estimand with a predefined level of precision. Let us illustrate this with the
example of the Central Limit Theorem (CLT). The CLT states that under mild assump-
tions, the empirical mean (the estimator) is asymptotically a Gaussian perturbation of
the population mean (the estimand)

1 & 1
E;Xi ~ E[X] +%N(0,1).

In this setting, distances between probability distributions are a natural concept to math-
ematically formalize what a level of precision is, and therefore enable us to replace the



asymptotic guarantee e by a quantitative bound of the form

dist (11, N (0,1)) < %
where 4, stands for the distribution of Z, = /n (£ 3" | X; — E[X]). In particular, if
such a bound is available, we know that to achieve an error of at most 1072, it suffices to
take a sample of size n such that /n = 102, i.e., n = 10,000.

From a probabilistic standpoint, the concept of distance between probability distri-
butions has many applications, one of which is the analysis of mixing times in Markov
chains. These chains represent stochastic processes where the immediate future depends
only on the present state, not on the past. A classic example is shuffling a deck of cards
using the riffle shuffle technique: after several repetitions, the deck becomes randomized.
While continued shuffling still changes the card order at each step, the overall distribu-
tion remains uniform, indicating that the system has reached equilibrium. By analogy
with this example, the mixing time refers to how long a Markov chain takes to reach
such equilibrium. Most Markov chains do, in fact, admit an equilibrium, even if not all.
From a more metaphysical perspective, this suggests that when time reaches infinity, only
the past remains and there is no more "present" to influence the future. In that sense,
the Markov property, which states that the future depends only on the present, implies
that the process becomes constant: with no present left, change ceases, and the system
settles permanently into its equilibrium. This makes it clear why the concept of distance
between probability distributions is so valuable in this context: it provides a way to quan-
tify how far the distribution of a Markov process at a given time is from its equilibrium
distribution. In doing so, it offers a rigorous foundation for the definition of mixing time.

Stein’s method takes a reversed perspective by using Markov chains to define a new
notion of distance between probability distributions. The underlying heuristic is that if a
Markov chain converges reliably to its equilibrium, then the time it takes to do so serves as
a meaningful measure of the distance between its initial distribution and the equilibrium
distribution. After all, if all roads lead to Rome, the time it takes to get there should give
a good sense of how far we are, even if we are traveling at random. Let us illustrate it
with the example of the Ornstein-Ulhenbeck process (OU). The OU process admits the
Gaussian as unique equilibrium probability distribution, and has the advantage to allow
almost all computations to be explicit. Let (X;);>0 be the OU process, u be the initial
distribution (that is the one of Xj), and v be the Gaussian equilibrium (that is the one
of X ). Consider a (real) test function h and look at the following function

fulz) = — /0 " (E[A(X)|Xo = o] — E[h(X.0)]) d.

If the process (X;); converges well, the integral above is finite, and the function fj, is
well defined. This is indeed the case for the OU process. We can now see how this
function f;, reflects the earlier heuristic: the integrand compares the distribution of X,
with the equilibrium distribution X, at time ¢. Integrating this comparison over all times
t € (0,00) amounts to tracing the entire trajectory of the process as it converges toward
its equilibrium. Now, the crucial thing is that the function f, satisfies the following ODE
for all x € R,
1) — 2 fi(@) = fulx) — E[A(Xo0)],

and moreover its second derivative is bounded with respect to A in the following manner

1/ loe < 211A]|oc-

Those two facts allows to derive inequalities of the following type: For all probability
distributions g,

Wi(p,7) < sup E[f"(Xo) — X f'(Xo)] (2)

1" lleo <2



where we denote by W; the Wasserstein L!-transport distance, and by v the standard
normal distribution. The proof is very short, starting from Kantorovich dual formulation
of the L! optimal transport problem, we write

Wi(p,v) = sup E[A(Xo) — h(X)]

[1A/]|co<1
= Hh§|1|1p<1E[ n(Xo) = X f1(Xo)]
< s BL(X) - X FX0)

where we used the ODE solved by f;, at the second inequality, and the second derivative
bound for the inequality at last line.

The supremum quantity appearing in Inequality ultimately defines the new notion
of distance we were seeking between any initial distribution p and the Gaussian equi-
librium «. The philosophy underlying Stein’s method can thus be reinterpreted as the
idea that a differential operator can characterize a probability distribution, specifically,
the operator f — f” — xf’ in the case of the Gaussian. This approach is known as the
Barbour generator approach [Bar90] and has led to the extension of the method to a wide
range of probability distributions through the use of differential operators that generate
Markov processes. In particular, to mention my own contributions, I have developed
Stein’s method for certain families of exponential-type probability distributions [Ser23b],
and for Beta distributions in collaboration with Fathi and Gentil [FGS24]. I also intro-
duced a version of Stein’s method that applies to shapes, see [Ser24b]. This approach
considers uniform probability distributions over domains 2 C R”™ rather than fully sup-
ported measures, thus embracing a more geometric perspective. In this setting, the notion
of distance provided by Stein’s method connects naturally with geometric notions of dis-
tance between shapes, such as Fraenkel asymmetry.

Let us note that, in practice, deriving inequalities of the type of is only the first
step in Stein’s method. The second, and typically far more challenging step, is to bound
the supremum appearing in the inequality. From a purely accounting viewpoint, the suc-
cess of Stein’s method can nonetheless be largely attributed to the fact that bounding
such supremum terms is often easier than directly bounding distances like the Wasserstein
distance. This is because the operator f” —x f’ resembles the beginning of a Taylor expan-
sion, thereby allowing one to leverage the powerful and well-established tools of classical
calculus.

Stein’s inequality can also be seen as a transport cost inequality, and can therefore
be paralleled with the Bobkov-Gétze L!-transport-cost inequality or Talagrand Inequality.
Noticing this, Ledoux, Nourdin and Peccati [LNP15| interpreted the supremum in as
an entropy-like term they called the Stein discrepancy, and proved the HSI inequality
improving Otto and Villani’s famous HWTI inequality [OV00] which connects the entropy,
the Wasserstein-2 distance and the Fisher information.

2.2 Stability of functional inequalities

In general, almost philosophical terms, the question of stability can be formulated as
follows: If we have almost solved a problem, does that mean we are necessarily close to
a real solution? Intuitively, one might be inclined to answer affirmatively: for example,
if one has nearly solved the equation 2x = 6, this means that one has found a number
xo such that 2xy ~ 6, and consequently xo must be close to the exact solution x = 3.
However, this notion of stability does not hold universally. There exist problems for which
this property fails. Such problems may be regarded as ’ill-behaved’ in the sense that the



lack of stability implies that approximating their solutions is inherently difficult, since
being almost correct does not guarantee proximity to the actual solution. At least from
a heuristic point of view, instability can arise from two reasons: a high degree of non-
linearity, and/or a lack of compactness. A toy example illustrating the lack of compactness
phenomenon could be the problem of minimizing the function f : R — R given by

f(x)z{ reowsld

1z, z>1

There is a unique solution to this problem, as the function attains its minimum only at
0. However, the problem lacks stability, due to the fact that f(z) — 0 as z — +oo.
As a consequence, any large number w > 1 constitutes an approximate solution, since
f(w) = 1/w is arbitrarily close to zero, yet w is far from the true solution, which is 0.

It is important to emphasise that the problem of stability should not be confused with
the problem of continuity, which poses the converse question, namely whether candidates
close to a solution actually provide an approximate solution to the problem. It should
also be noted that the question of stability is in fact a reverse problem: it seeks to recon-
struct the cause (something close to a true solution) from the observation of its effects
(an almost resolution of the problem).

The question of stability is really interesting for functional inequalities, which are
problems that are infinite-dimensional and often have a geometric aspect. The most
famous example is perhaps that of the isoperimetric inequality: among all shapes of fixed
volume v > 0, the goal is to find the shapes with the smallest perimeter. It can be written

inf P(Q2

nf P(0)
where P is the perimeter functional. Up to translation, the extremizers are the balls of
of volume v, and the isoperimetric inequality formalizes that fact:

P(Q) 2 n|Byf'/" |0/

where B; stands for the ball of radius 1. The stability problem can be approached in
two ways: qualitative stability or quantitative stability. Qualitative stability consists
of showing that if a sequence of domains (2, satisfies P(£2,,) — P(B), then (up to a
subsequence), €2, — B in an appropriate topology. This is nothing other than the Palais-
Smale compactness condition. On the other hand, quantitative stability consists of being
able to control exactly the distance between € and B given the deficit P(Q2) —P(B). Note
that the distinction between qualitative and quantitative stability is exactly the same as
the distinction between asymptotic theory and finite sample estimation theory that we
mentioned in statistics, see section Over the past twenty years or so, there is been
growing interest in understanding the quantitative stability of functional inequalities. A
good example of this attention is Alessio Figalli’s talk at the Sixth European Congress of
Mathematics [Figl3)].

In the case of the isoperimetric inequality, the question boils down to whether the
isoperimetric deficit controls a certain distance from the ball. In this case, the answer is
yes, and it is now well known: It holds that

P(Q) = n| B[ |Q70" > €, QY A(Q)?

where A stands for the Fraenkel asymmetry, which measures the distance between €2 and
the balls which are solutions, and C,, is a constant that depends only on the dimension
n, see for example, Fusco survey [Fusl5].



Many functional inequalities show quantitative stability, such as the Brunn-Minkowski
inequality [FVHT23|, the Faber-Krahn inequality [BPV15] or the Sobolev inequality
[IDEET25], to name but a few, and even in the context of manifold, see for example
the overview [Nob24].

Among many diverse proof techniques to study the stability of functional inequalities,
let us mention:

e Entropy methods: A functional inequality often quantifies the rate at which a cer-
tain flow converges to equilibrium in terms of a distance, commonly referred to as
"entropy" by analogy with physics. Therefore, if a function f is nearly optimal for
the inequality, we gain insight into the convergence speed of the flow starting from f
toward a true optimizer. By integrating this entropy over time, we can then expect
to obtain a bound on the distance between f and the optimizer, see [Dol21].

e Symmetrization methods: Extremizers often exhibit a high degree of symmetry, for
instance, balls in the case of the isoperimetric inequality. The underlying idea is that
near-extremizers should inherit, at least approximately, these same symmetries, see

[FMPOS].

e Transportation methods: When it is possible to transport an almost extremizer
onto a true minimizer, analyzing the fine properties of the transport map provides
insight into how close the two are. This approach is particularly elegant in the case
of the isoperimetric problem, where it refines Gromov’s proof of the inequality by
considering the optimal transport map between the uniform measures on the near-
optimal set 2 and the ball B. This method involves highly nonlinear PDE analysis,
notably the Monge-Ampére equation, which governs optimal transport maps, see

[FMP10].

e The selection principle: This general principle asserts that a minimizing sequence
for an optimization problem tends to "select" a dominant structure. In the context

of the isoperimetric problem, this selected structure is typically close to a ball, see
[CL12].

e The ABP method: Alexandroff-Bakelman-Pucci estimates (ABP) are L> bounds
for solutions of Poisson equations associated to linear second order elliptic operators.
The method is similar to the transportation one, but the gradient of some solution
of a linear Neumann equation is used instead of an usual transport map. ABP
estimates then allow to get fine properties for that gradient, and deduce stability,

see [CROS16].

Following Courtade and Fathi’s ideas [CE20], Stein’s method can also be used to obtain
stability results for functional inequalities. The starting point is to say that extremizers are
critical point, and so they satisfy the Euler-Lagrange equation. The idea is then to view
the differential operator appearing in the Euler-Lagrange equation as a characterizing
operator for the extremizers, in the spirit of Stein’s method, see Section[2.1] If all goes well,
a stability result follows. I used this type of idea during my PhD in the articles [Ser23b],
which establish stability results for the Poincaré constant of the reversible distribution of
a diffusion process; [Ser23al, which prove stability results for eigenvalues of any order of
a one-dimensional diffusion; and [FGS24|, where, in collaboration with Fathi and Gentil,
we state a quantitative Lichnerowicz inequality in the framework of RCD spaces, for
more details about this type of spaces, see Section Note that, through the spectral
interpretation of Poincaré’s inequalities, the stability problem in this case can be seen
as a relaxation of Kac’s famous question: “Can one hear the shape of a drum?”. In
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particular, unlike Kac’s question, this relaxed version admits a positive answer, as shown
in the above-mentioned articles. Recently, I also provided a new proof of the stability
of the Brock-Weinstock inequality (involving the first nonzero Steklov eigenvalue) by
introducing a version of Stein’s method for shapes; see [Ser24b|. For the original proof
of the stability of the Brock—Weinstock inequality, based on a calibration technique, see
[BDPR12].

2.3 Beyond stability: Bubbling

What happens when stability fails? In some cases, a finer phenomenon known as bubbling
emerges. Bubbling occurs when a sum of "weakly interacting" solutions is almost a
solution, without being an actual one. This phenomenon can only arise in nonlinear
problems, due to the lack of superposition. Bubbling breaks stability, as such sums can
be arbitrarily far from any true solution. However, it raises a deeper, and often technically
challenging question: Are almost solutions necessarily close to a sum of weakly interacting
true solutions?
Let us consider the example of the Sobolev inequality: For all u € H(R"),

[lullze < S [[Vull2

where 2* = % is the sharp exponent, and S, is the Sobolev constant. All extremal

functions are given by the so-called Aubin-Talenti bubbles

_n=2
Jobao () = (02 + blx — :EO\Q) 2 0>0,b>0,29€R"

As said before, this inequality satisfies stability, as [BE91| first showed that for all u €
H'(R™), it holds that

inf |V (4= fobao) Iz < Cn (S31IVullz = [u

0,b>0,x9€R™

)
2*

where C), is a dimenional constant. However, one may wish to go further and ask whether
the Euler-Lagrange equation associated with the Sobolev inequality also exhibits stability.
This equation is given by

Au+ulu* 72 =0. (3)

The Aubin—Talenti bubbles are the unique nonnegative solutions, however, sign-changing
solutions also exist. The question is then whether stability holds when restricting to non-
negative functions. The answer is negative. Indeed, since a bubble f,; ., is concentrated
around x(, one can construct a sum of such functions, each centered at well-separated
points z;, and obtain a function that is close to solving the Euler-Lagrange equation.
Such a sum is referred to as a sum of weakly interacting bubbles, and although it approx-
imates a solution, it remains far from any true nonnegative one. More precisely, due to
the concentration property of the Aubin—Talenti bubbles, the function is locally close to
a single bubble f,, ;. », near each point z;, and thus locally close to achieving equality in
the Euler-Lagrange equation. Away from all x;, the sum is close to zero, and again nearly
satisfies the equation. However, such a function cannot be close to a single bubble unless
all the parameters o;, b; and x; are nearly identical. Therefore, the stability property is
broken in this setting.

There is, nevertheless, a bubbling phenomenon that occurs: A nonnegative almost so-
lution of is close to a sum of weakly interacting Aubin-Talenti bubbles. As in the case
of stability, there exists both a qualitative and a quantitative version of this result. The
qualitative version dates back at least to [Str84]. The quantitative version is more recent,
see [DSW25, [FG20], and has the surprising feature that the rate at which the deficit
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controls the distance to a sum of weakly interacting bubbles depends on the dimension.

The bubbling phenomenon appears extensively in the literature on nonlinear PDEs,
see for example, [dP17]. Among many instances, one can mention the case of harmonic
maps, where stability holds when restricted to maps of degree k£ > 1, but bubbling occurs
for maps of degree k > 2, see [SU83|, BCY5, [Top97], [Top23, Rup23).

3 Renormalization

3.1 Renormalization and the Polchinski flow

Renormalization first appeared in quantum field theory in the 1950s as a set of techniques
for circumventing the appearance of infinite quantities in continuum models. Let’s present
it briefly through the ¢* model.

In classical mechanics, the least action principle states that the motion of a body can
be described as the function of time that minimizes the action of a suitable Lagrangian,
depending on the problem under consideration. The same idea applies in Lagrangian field
theory: the field, for instance a scalar field ¢ of mass m moving in a potential V(¢) > 0,
minimizes the action

/R L (%!Wﬁ(:v)ﬁ +mg(x)” — V(qﬁ(:c))) .

Since any minimizer must in particular be a critical point of the action, it satisfies the
associated Fuler-Lagrange equation, which in this context is precisely Newton’s second
law of motion.

Now, in the context of quantum uncertainty, instead of determining the exact minimum
of the action functional, one seeks it only up to random fluctuations. From a mathematical
perspective, this is modeled by a probability distribution concentrated around the exact
minimizers, with formal density given by

Do exp{~ [ do|5IVoa) + mote) + V(o) | ()

where D¢ denotes the Feynman measure, formally corresponding to the infinite-dimensional
Lebesgue measure, which is not mathematically well defined. Nevertheless, the formal
density

D¢ exp {—% /Rd dz (|[Vé(z)|* + m¢(x)2)}

corresponds to the massive Gaussian free field, which is well defined. Hence, a natural
approach to make (4)) rigorous is to try to define it as the measure with density e~V (),
up to a normalizing constant, with respect to the Gaussian free field. In particular, the
choice of the double-well potential V (¢) := g(¢* — 1)? for some coupling constant g > 0,
is known as the ¢* model.

From a mathematical perspective, the problem of giving a rigorous meaning to is
both deep and extensively studied. The difficulties stem from two main issues: first, the
absence of an analogue of the Lebesgue measure on function spaces; second, the fact that
the random fields one can define in this framework possess very low regularity. In fact,
they are not pointwise-defined functions, but rather distributions, defined only on regions
of space and not at individual points. As a consequence, algebraic expressions such as ¢?
will, a priori, not have any meaning.

One approach is to define as the limiting law of a suitable stochastic process. This
technique, known as stochastic quantization, was introduced by Nelson [Nel66] and by
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Parisi and Wu [PY80]. Indeed, at least formaly, is the equilibrium distribution of the
dissipative dynamics governed by the following stochastic partial differential equation:

e = (A+m)gy — VV () + € (5)

where ¢ denotes a spacetime white noise. The presence of noise forces ¢ to be a generalized
function, so the term VV(¢;) ~ ¢ is not defined, which makes this SPDE singular.
The renormalization procedure consists in subtracting divergent counterterms in order
to isolate the non-singular part of the Lagrangian, which is the quantity with a physical
meaning. Formally, one writes (4)) as

1
D¢ exp {—/ dx [§]V¢|2 +me® + gesr (0 — 1)2} — counterterms}
Rd

where the part — [o, dz [$|V|? + ger(¢? — 1)?] is the effective Lagrangian, with the ef-
fective coupling constant g.g which is an experimentally observable quantity.

To date, the most advanced mathematical frameworks for determining when such
counterterms exist are Hairer’s theory of regularity structures [Hail4|, which has a more
algebraic flavour, and the theory of paracontrolled distributions developed by Gubinelli,
Imkeller, and Perkowski [GIP15], which adopts a more analytical perspective.

To name just a few important advances from the history of Physics, let us cite Kadanoff
block spin Renormalization scheme [Kad66] in statistical field theory, which consists in
integrating ¢ up to some energy scale, i.e. dividing R? in little blocs and integrating the
fluctuations of ¢ at the level of the size of the blocs. In Fourier space, this corresponds to
integrating high fequencies. Later, K. Wilson [Wil71], then Polchinski [Pol84] reformu-
lated this procedure as an infinite system of differential equations on the parameter space,
thus presenting a semigroup structure, referred to as the renormalization group. Among
the many technical difficulties is the fact that this procedure creates coupling parameters
at all orders from the very first step. For example, whereas the ¢* model only has coupling
constants up to order 4, renormalization immediately produces further couplings at all
orders.

Among the others approaches to defining (4], let us also mention the variational
method of Barashkov and Gubinelli [BG20], which is based on a variational stochastic rep-
resentation formula for the Gaussian Free Field (GFF), in the spirit of the Boué-Dupuis
formula. As a variational method, it is perhaps the closest to the least action principle
and the original ideas from Lagrangian mechanics.

It is possible to give meaning to (4f) without resorting to the abstract infinite-dimensional
machinery described above. This is the constructive approach, which consists in replacing
the continuum R? with a discrete space given by a lattice LT N eZ¢, where T? denotes
the torus of width L > 0 and € > 0 is the energy cut-off, corresponding to the block
size in Kadanoff’s scheme. The continuum model is then replaced by a well defined
probability distribution on R¥ where K is the number of sites in the lattice. The idea is
that all properties of the lattice model that are independent of ¢, are ipso-facto true for
the continuum model. Under this constructive formulation, it is possible to show that the
continuum model is Gaussian for all d > 4 (the case d = 4 having recently been solved
by Aizenmann and Duminil-Copin [ADC21]), but is in fact non-Gaussian for d = 2 and
d = 3. Note that in dimension d = 2, the continuum ¢* measure is absolutely continuous
with respect to the GFF in finite volume (L < 00), but becomes singular in infinite vol-
ume (L — o0). In dimension d = 3, it is always singular with respect to the GFF. Let us
also mention that the case d = 1 is non-Gaussian but essentially trivial: since the GFF is
then a continuous function (namely, Brownian motion), the equation defining the model

13



reduces to an SDE and is therefore well understood, in contrast with .

For lattice models, up to a normalizing constant, the density take the form

1w (dg) = Yeou, (d9) exp(=Vo(9))

where the centered Gaussian ¢ is the discrete GFF. Recently, Bauerschmidt and Bod-
ineau [BB21| have performed a renormalization group procedure on such models by de-
composing the covariance C4, at each order of fluctuations. The procedure then consists in
disintegrating vy into a renormalized part v; and a fluctuation (random) part pf. This is
the analogue of where the renormalized measure corresponds to the effective part of
the Lagrangian. The renormalized measure obeys a Hamilton-Jacobi equation that can be
read directly as the exact equation of the Polchinki renormalization group. Bauerschmidt
and Bodineau used it to decompose the entropy of the original measure 1y and state a
generalized Bakry-Emery criterion, which enabled them to prove a logarithmic Sobolev
inequality for the continuum two-dimensional sine-Gordon model. The same method also
allows to prove a log-Sobolev inequality [BD22] for the ¢* model in dimension 2 and 3.

Note that the fluctation measures u; are deeply connected with Eldan’s stochastic
localisation, which is a powerfull method to study convex analysis problems and to derive
mixing bound for Markov chains, see [CE22].

The flow of renormalized measures (14)i>0, known as the Polchinski flow, has the
added advantage of generalizing the well-established Bakry-Emery theory. Building on
these ideas, I suggested to introduce a dynamic version of the I'-calculus from Bakry-
Emery theory to study the Polchinski flow, and more generally non-homogeneous flows,
in the article [Ser24al, inspired by and extending [KP23| Section 2].

On a somewhat different topic, but to highlight the recent importance of the renormal-
ization group in mathematics, let us mention the work of Armstrong, Kuusi, and Mourrat
[AKM19], where they implement a rigorous renormalization scheme to obtain quantitative
bounds in the stochastic homogenization of certain PDEs with random coefficients.

3.2 Dynamical I'-calculus

Bakry and Emery [BES5| introduced the I'y criterion as a sufficient condition to ensure
the hypercontractivity of a Markov semigroup. This celebrated I'-calculus introduced
very powerful tools for studying properties of a Markov semigroup, such as logarithmic
Sobolev inequalities, concentration of measure, mixing time etc.

The main ideas are as follows. Since what a Markov process does at the present
moment depends solely on what it did at the very last moment, it follows that its future
can be predicted (let’s say stochastically) by knowledge of the process at an infinitesimal
variation of time. The way in which the present can be predicted at the next instant
is determined by the so-called infinitesimal generator. For the deterministic motion of
a point, the infinitesimal generator would correspond to the velocity of that point, and
hence be a first order differential operator.

In the case of a diffusion Markov process, i.e. one that propagates in space in the
same way as heat diffuses in the material, the infinitesimal generator can be written as a
second-order differential operator, taking the form

L= Z Q; 4 8i7j + Z bz &
1,j i

A natural thing to do with this second-order differential formula is to measure the extent to
which it is not first-order, i.e. the extent to which the process is non-deterministic. Since
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it would be of first-order if, and only if, it would satisfies Leibniz rule of differentiation,
one can measure it by the following quantity

[L(fg) — fLg — gLf],

N | —

L(f,g) =

which is called the carré du champ operator because it boils down to I'(f, f) = |V f|* when
a;; = 0;;, denoting § the Kronecker symbol (in French, "carré du champ" means field
squared, talking about the gradient field V f). The carré du champ I'(f, f) is a quadratic
first-order operator which, in average with respect to the equilibrium distribution p, is
equal to —L:

/F(f,g) dp = —/fﬁgdu-

So one may now want to measure the extent to which the carré du champ I' commutes
with the generator £ by defining

Iy(f.g) = = [L(T(f.g)) — T(f, £g) — T(g. L))

2

which is simply called the operator I'y. The quantity I's(f, f) measures the evolution
of T'(f, f) along the dynamics. The remarkable fact is that nonnegative lower bounds
on I'y, which can be therefore interpreted as preventing the energy from dissipating too
quickly, have incredibly deep implications. This would not seem so mysterious, however,
looking at Bochner’s formula, linking I'; to the Ricci curvature tensor, and allowing the I'y
criterion to be read as a lower bound on Ricci curvature, as was done in the seminal article
[AGS15]. Note also that the fact that the I'y operator and the Ricci curvature tensor are
related is not so surprising, since both are measures of a commutation defect: The first
is the commutation defect between the carré du champ operator and the generator of a
Markov process, the second is the commutation defect between the covariant derivative
with respect to two vector fields. What is generally referred to as I'-calculus is a set of
techniques aimed at showing stochastic, geometric or functional properties of a Markov
diffusion using computable properties of the three objects defined above: L, I' and I's.
We refer the reader to [BGL14] for a detailed presentation.

Among many other developments, these tools have been extended into integrated
criteria to study the global properties of Markov processes [CG23|, and they have also
been extended to the study of hypocoercive diffusions [BaulT7].

A natural extension is to adapt the I'-calculus to the context of a flow of probability
distribution, in order to obtain some control over the dynamics of a functional inequality
along the flow. Klartag and Putterman’s work on the Poincaré constant along the heat
flow [KP23| constitutes pioneering work in this vein. We should also mention the work of
Roberto and Zegarlinski on the hypercontractivity in Orlicz spaces for non homogeneous
diffusions [RZ22].

This is precisely the approach I have taken in [Ser24al, where I formulated and applied
a dynamic I'y criterion that reduces exactly to the original Bakry-Emery criterion in the
case of a static flow. Furthermore, for the Polchinski flow of renormalized distributions,
this dynamic criterion specializes to the multiscale Bakry-Emery criterion of Bauerschmidt

and Bodineau [BB21].
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